
Call the Wizards!

• Game Pitch

• Game Design Doc

• Character Design

• Map Design

• Spawn Data

• Combat/Economy Balance

• Game State Flowchart

• Skill Design

• Tutorial Plan

• Hub UI & Progression

Other Projects

• Behaviour Trees

• Multiplayer prototypes

• Scene Design

• System illustrations

• Difficulty curves

• Other game engines

Hi!
Welcome to my design folio.

I’ve been a digital creative since I got my
hands on MS Paint and Notepad in 1998. I
started my career in web development,
took a detour through retail/marketing, and
am now finding my place in the games
industry.

Most of this folio is about my latest game,
Call the Wizards, which I fully designed
and coded as a solo developer.

I’d love to bring my skills to your team and
continue learning and making awesome
games.

Thanks for taking a look!

 - Shaun Norton

Call the Wizards!

Game/Grant Pitch
The game was in early development when
Meta announced a funding program for up
to $25,000 USD to produce an innovative
vertical slice for mixed reality.

I seized the opportunity for funding and
potential exposure/Meta contacts.

The pitch included core mechanics, scope
of development, and how it would utilize
MR capabilities.

The pitch was approved within 1 week.

The 7-page pitch is attached separately.

Game Design Doc
The first milestone for the Meta funding
program required the delivery of a
game design document.

My previous games had evolved
through constant iteration, without a
tangible design document, so this was
an exciting new task for me.

I found that my experience in graphic
design and writing well-formatted
reports came in handy.

The 20-page GDD is attached
separately.

Characters
The player summons and manipulates
wizards, so it was important to make them
distinct and playful. I used simple models
during early prototyping to get a feel for the
game.

I loved finding the personality of each
character and communicating it to the 2D
artist via briefs and feedback sessions.

Due to budget, all of the enemies were
sourced via the Asset Store and my own
modifications. So, where possible, I made
variants using size, colour and
attachments like wings/armor. The final
game had around 50 enemy types.

Map Design
The game shipped with 17 levels.

I studied similar games like Kingdom Rush
and Bloons TD, to learn how to make better
maps, then sketched them in Photoshop.

After I understood what makes a map
interesting, I then had the freedom to
experiment with a mix of symmetry and
randomness.

Some maps were designed with a single
optimal strategy, while others had a more
aesthetic appeal.

I also created some unique objects per
biome, and the ghost levels have a unique
objective entirely.

The designs were iterated upon while I was
designing the enemy spawning patterns.

Spawn Data
Each level had different creeps, loot,
spawn points and quantity/timing.

I designed my data such that I could
copy and paste between levels and
make adjustments easily, for
example, using a loose relation
between a creep enum and the
actual creep def that it referred to.

Creep data also included their base
stats and elemental immunities.

The sliders on the right helped me
visualize the period of time in which
the creeps spawn.

Combat/Economy
Unlike most tower defense games, the wizards attack
on a rhythm, across an area, which is key to making it
feel like a cartoon factory.

However, this did complicate the damage/DPS balance
a bit. So I used a spreadsheet to keep track of their
damage, across multiple ranks.

Then, I had to assign a cost to upgrade, keeping in mind
the final “cost of DPS” figure. I used this to influence
their cost-power curve. The Flame wizard formed my
baseline.

Some wizards were harder to utilize effectively, so they
had more damage, or were cheaper to upgrade.

Loot drops were balanced using known good figures
and tiny adjustments on a per-level basis.

Game State
As a solo developer, I didn’t
often create flow charts for
myself; just preferring to get it
into code and work with it.

However, there were occasions
when I needed one, such as
this.

The Meta Quest Mixed Reality
API was fairly difficult to use, as
it had asynchronous functions
and a variety of fail/error states.

So I used yEdit, my preferred
charting tool, to lay it out.

Skill Design
In an early prototype, each
wizard had 2 active skills and 2
passive skills.

I used a spreadsheet to design
these before implementing
them.

Looking back, I can’t believe
that I had all of these in the
game at one point.

It would have been a nightmare
to keep balanced and bug-free.
Also, it was not so valuable to
the player, because the wizards
are AI-controlled.

Tutorial Plan
Late in development, I worked on a tutorial
level.

It hooked into events and objects in a level,
displayed pop-up text, pointed to objects,
and restricted some interactions.

My first step involved looking at the game
as-is, and what actions or knowledge the
player needs to know.

Then I selected a subset of elements,
sorted them into groups, and then ordered
them as logically as I could.

Finally, I wrote some text to go along with
each step.

Hub UI &
Progression
Post-release, I overhauled the hub
UI and progression between
levels.

Although no players reported
problems with the Hub, I watched
a player get confused and blocked
from the first moment, so I knew
this was a priority.

I introduced some items that the
player could find & use to unlock
new worlds.

Overall, the game feels much
more like a ‘real game’ and less
like a confusing experiment.

Other Projects

Max Mustard:
Behaviour Trees
While working as a Unity programmer at
Toast Interactive on the Gold Coast, I took
on the early prototyping of the boss fights
for the platformer game Max Mustard.

I used Behaviour Trees, scene objects and
debug gizmos to design the placement,
timing and movement of
hazards/platforms.

Much of the final gameplay elements
emerged from those first few weeks of
iteration and internal testing.

Crossy Road :
Multiplayer prototypes
While working as a junior programmer at
Hipster Whale in Melbourne, I took on a
variety of tasks that involved design &
implementation:

• New experimental multiplayer modes

• Grid-based map & behaviour design

• Cross-platform control UX/UI

• Documentation, cleanup and tutorials
for an internal scripting language

• Company-wide game jam

• Multiplayer testing sessions

Richie’s Plank
Experience:
Scene Design
Ported & redesigned the ‘Christmas’ mode
from the PC-VR app into the Quest VR app:

• Player travel path via splines

• Placed objectives

• Balanced scoring

• Placed and moved buildings

• Set-dressing and lighting

• Directed external artist

• Completed within 4 weeks

Unstung:
System illustrations
My bee game, Unstung, had a few unique
mechanics, so I made these diagrams as a
kind of tutorial.

I can appreciate the value of good graphic
design to communicate ideas.

I’ve been using Photoshop for over 20
years; it’s as natural to me as a word
processor or web browser.

Moon Slime:
Difficulty Curves
Moon Slime is a Pong-like game with
difficulty that increases as the player wins
matches.

I first learned about curves while studying
creative writing, and then found them
again when getting into game
development.

I took the output of the difficulty curve and
fed it into other variables; here you can see
how the difficulty value is used to
influence the AI agent’s speed, reaction
time, and accuracy.

I also used curves with varying periods to
determine powerup spawns, so the player
would experience a sequence of different
powerup combinations as they played over
about 6 minutes. The peak is a really
exciting moment!

Other Game Engines
I’ve been in Unity/C# land since I got back
into coding in 2017. But I have dipped into
other engines a tiny bit…

Godot:

I took on the role of Lead, Producer & UI
designer for a Godot game jam in April 2024.
I got a feel for how it works.

Unreal Engine:

I joined a rev-share project in 2020 for a few
weeks, and got a little taste of Unreal 4.

	Slide 1
	Slide 2: Call the Wizards!
	Slide 3: Game/Grant Pitch
	Slide 4: Game Design Doc
	Slide 5: Characters
	Slide 6: Map Design
	Slide 7: Spawn Data
	Slide 8: Combat/Economy
	Slide 9: Game State
	Slide 10: Skill Design
	Slide 11: Tutorial Plan
	Slide 12: Hub UI & Progression
	Slide 13: Other Projects
	Slide 14: Max Mustard: Behaviour Trees
	Slide 15: Crossy Road : Multiplayer prototypes
	Slide 16: Richie’s Plank Experience: Scene Design
	Slide 17: Unstung: System illustrations
	Slide 18: Moon Slime: Difficulty Curves
	Slide 19: Other Game Engines

